Back toNutanix 用語集

データベースとは

2024年06月27日 | min

データベースの定義

データベースとは、コンピューターやサーバー、クラウド上にデジタル形式で保存されている情報の集合体です。データの構造や編成に応じて、極めて単純なデータベースもあれば、極めて複雑なデータベースもあります。データベースシステムは一般に、情報本体とデータベース管理システム(DBMS)で構成され、ユーザーは情報へのアクセス、更新、分析、管理を容易に行うことができます。

データベースにはさまざまな種類があります。最も一般的でオーソドックスなタイプは、テーブルにデータを保存するリレーショナルデータベースです。テーブルは行と列で構成され、テーブル同士が関連付けられています。リレーショナルデータベースには、連絡先情報を含む顧客リストや、インベントリ記録、売上情報、財務情報など、さまざまなデータを保存できます。リレーショナルデータベースは、eコマース、インベントリ追跡、顧客関係管理(CRM)など、さまざまな種類のアプリケーションで使用されます。

ほぼ全てのリレーショナルデータベースは、データの追加、更新、クエリ、削除に SQL(構造化問合わせ言語)を使用します。SQL は IBM 社が 1970 年代に考案したプログラミング言語です。データベースの作成や変更、データの操作、特定の情報の抽出、各種レポートを実行するときに、リレーショナルデータベースでは SQL を使用します。

リレーショナルデータベース以外の種類のデータベースには、キーバリュー型データベース、ドキュメントデータベース、ワイドカラムデータベース、グラフデータベースなどがあり、これらを総称して非リレーショナルデータベースや NoSQL データベースと呼びます。リレーショナルデータベースとの違いは、テーブル以外の形式でデータを保存し、SQL 以外の手段で操作する点です。このため、非リレーショナルデータベースはさまざまななユースケースに適しています。一方で、非リレーショナルデータベースには、例えばトランザクションの ACID 特性 (英語のみ) を満たしていない場合があるなどのマイナス面も存在します。

何らかの形でデジタル技術を利用している現代の組織にとって、データベースは重要な存在であり続けています。最新鋭のアプリケーションやビジネスサービスであっても、そのほぼ全ての運用をデータベースが支えています。

関連リソース

実際の組織が抱える、実際のデータベースに関する課題

データベースの仕組み

データベースでは、構造化または非構造化を問わず、さまざまな情報を扱うことができます。保存したデータはソフトウェアプログラムを通じて目的に応じて操作し、情報間を関連付けることができます。

前述の DBMS は全てのデータベースに必須の構成要素です。DBMS はデータベースの頭脳にあたり、データ本体とユーザーとの橋渡しとなります。ユーザーがデータの保存場所や格納方法を正確に知らなくてもデータを操作できるのは、DBMS の働きです。ユーザーに代わって DBMS がデータの場所を特定し、アクセスします。DBMS が提供する機能は、情報の追加、削除、変更、更新、編成だけではありません。バックアップとリカバリや、性能監視と最適化といった各種の管理機能も提供しています。

DB-Engines (英語ページ) の最新のランキングでは、広く利用されている DBMS として以下の名前が挙がっています。

  • Oracle
  • MySQL
  • Microsoft SQL Server
  • Postgre SQL
  • MongoDB
  • Redis
  • IBM DB2
  • Elasticsearch
  • SQLite
  • Microsoft Access

データベースとスプレッドシートの違い

スプレッドシートもデータベースと同様にデータの保存や整理に広く使われていますが、両者は異なります。Microsoft Excel などの一般的なスプレッドシートは、データベースに比べて格段にシンプルで、通常は 1 人から数人程度のユーザーを対象にしています。数十人や数百人、数千人以上のユーザー向けではありません。

データベースとスプレッドシートで特に大きな違いは 3 つあります。(1)データの保存・アクセス・操作の方法、(2)保存できる情報の量、(3)情報にアクセスできるユーザーの数です。

データベースには、単なるスプレッドシートで扱うには煩雑な、膨大な量のデータを保存できます。また、多数のユーザーがデータにアクセスして操作できるようになっています。また、データベースでは、スプレッドシートにはない複雑で包括的なパラメーターを指定してクエリを実行し、特定の情報を抽出できます。

データベースの構成要素

データベースの構造はさまざまなバリエーションが考えられますが、一般には、次の 5 つの主要な構成要素を含みます。

  • ハードウェア:データベースのソフトウェアが動作する物理的なコンピュータ、ストレージシステム、デバイス。

  • ソフトウェア:DBMS、またはデータの管理やアクセスを可能にするシステム。通常は使いやすいインターフェースやコントロールパネルを備えている。

  • データ:データベースに保存されている情報本体。アクセスや管理が容易になるように編成されている。

  • データアクセス言語:DBMS がデータの管理や編成に使用する SQL などのプログラミング言語。ユーザーも、コマンドの作成やデータベースへのクエリにこの言語を使用する必要がある。

  • プロシージャ:ユーザーが DBMS を介してデータにアクセスし、データの編成を行うときに従う、定義済みの規則。

関連リソース

SBテクノロジー、DBaaSを内製化し、運用の効率化とDBサービス標準化を実現

データベースの用途

都会の大病院の診療記録から、街角の生花店の販売記録、グローバルな通信プロバイダでのソーシャルメディアの使用統計や使用パターンに至るまで、データベースはさまざまなビジネスの場面で、重要な情報の保存・整理・アクセス・管理に使用されています。組織にとって、データベースのデータには次のような用途があります。

トランザクションアプリケーションのデータの管理

データベースのほとんどは、アプリケーションに関するデータを管理するために使われています。逆に言うと、データを使用するアプリケーションにはデータベースが不可欠です。例えば、商品やサービスを販売する eコマースサイトには、各取引を記録を作成するデータベースが必要です。CRM アプリケーションには、顧客に関するデータを整理し、変更を追跡・保存するためのデータベースが必要です。このタイプのアプリケーションを総称してトランザクションアプリケーションと呼びます。トランザクションアプリケーションが扱うデータは、追加や更新、削除が頻繁に発生します。そのため、高頻度での読み込み(データの参照)と書き込み(データの変更や操作)の両方をサポートするデータベースが必要です。

データの分析

データベースはトランザクションアプリケーションのほか、分析アプリケーションからの利用にも対応しています。分析アプリケーションのユーザーは、データに隠れている傾向を容易に視覚化し、ビジネスにメリットをもたらすインサイトを抽出できます。分析アプリケーションには、膨大な量のデータの読み取りとクエリが可能なデータベースが必要です。企業のリーダーは、データベースのデータを分析することによって、より多くの情報を使用して、自社の将来について、スマートな意思決定を行うことができます。現代の高度なデータ分析プラットフォームを利用することで、データを深堀りし、自分たちでは気づくことできなかった実用的な情報を取得できます。AI と機械学習はデータ分析を変革しており、組織に業界における優位性をもたらしています。例えば、販売データやインベントリデータ、顧客データなどを保持している企業は、データからパターンを割り出し、業務プロセスや顧客エクスペリエンス、ROI の改善に役立つ要素を特定できます。

データベースの課題

組織が扱うデータが増え続けるなか、今日のデータベースは巨大化・複雑化がますます進み、それに伴って課題も増えています。主な課題は次のとおりです。

  • 増え続ける膨大なデータとユーザー要求への対処:巨大なデータベースは、それだけでもデータの管理や編成が複雑になる。データベースの基本的な要件は、必要なデータに、すばやく効率的アクセスできることであり、データベース管理者にとってこれを常に満たすのは容易ではない。
  • データベースへの容易なアクセスを開発者に提供:前述のとおり、ほぼ全てのアプリケーションは、データ管理にデータベースを必要とする。新たなアプリケーションの開発や、既存のアプリケーションへの新機能の追加では、ソフトウェア開発者がデータベースをデプロイし、実行する必要がある。開発者がデータベースに迅速かつ容易にアクセスできるようにして、アジャイル開発を実践できるようサポートすることは、データベース管理者や運用チームにとって困難だが、重要なタスクである。
  • データの適切な保護:データ侵害は年々増え続け、ランサムウェアが猛威を振るっている。組織の未加工データは攻撃者に狙われやすく、データベースには常に万全の保護が欠かせない。患者データ、売上、収益、製品仕様、従業員などの情報は、いずれもハッカーにとって稼ぎが大きい極めて魅力的な標的となる。
  • データベースの可用性と性能の維持:組織のデータベースは規模が大きくなっても定期的な保守と更新が欠かせない。パッチの適用や更新を複数の大規模なデータベースに対して行うのは必ずしも容易ではないが、ユーザーやアプリケーションが情報にアクセスする際に支障が出ないよう、性能と可用性を一貫して高い水準に維持しておくことは、ビジネスの成功を左右する。
  • ビジネスの成長にあわせたシームレスなスケーリング:データベースは組織の成長に応じたスケーリングが可能でなくてはならない。ビジネスが拡大すると、データにアクセスするユーザーの数や、リモートユーザーの接続元の数が増え、システムに格納されるデータの量も増えていく。データベース管理者や運用チームが拡大を見越して準備を整え、数か月後や 1 年後のデータベース容量を予測するのは困難である。しかし、スムーズで持続可能な成長のためには、必要なときに必要な容量を確保できるようにすることが不可欠である。
  • データプライバシー、データレジデンシー、データ主権の維持:さまざまな国や地域、業界で、データプライバシー、データレジデンシー、データ主権の規制が強化されており、データベース管理者の業務が複雑化するリスクがある。適用すべき規制や対象となるデータボリュームが必ずしも明確ではないが、対応を誤ると、重大な罰金の支払いや多くの手間を伴うことになる。や
  • データソースの統合と効率的な分析:今日の組織は、IoT システムや監視カメラから eコマースや CRM システムに至るまで、多様なデータソースからデータを取得しており、異種データを統合する手段が欠かせない。情報の保持ににデータレイクやデータウェアハウスを利用する企業は多く、ユーザーは共通のデータベースインターフェースを通じて情報へのアクセスや管理を行うことができる。

 

Nutanix のソリューションがどのように課題解決するか

Nutanix は、データベースの運用と管理を強化する 2 つの重要なソリューションを提供しています。

Nutanix クラウドプラットフォーム(NCP):NCP は、ハイブリッドマルチクラウド環境でビジネスクリティカルなアプリケーションとデータベースを稼働するのに最適なソリューションです。エンドユーザーの要求に応える一貫したパフォーマンスや、優れた可用性、フルスタックの強固なセキュリティ、ビジネスニーズの変化に対応できる高い俊敏性を備えており、運用コストの削減とシンプルな管理を可能にします。NCP は、レガシーとモダンの両方のビジネスアプリケーションやデータベースを、オンプレミス、クラウド、エッジのいずれにもデプロイできる他に類を見ないソリューションです。

Nutanix データベースサービス(NDB):NDB は、データベース管理の複雑さを大幅に軽減し、ソフトウェア開発を加速させます。 Microsoft SQL Server、Oracle Database、PostgreSQL、MySQL、MongoDB の各データベースの利用に対応し、オンプレミスとパブリッククラウドにわたってデータベースのライフサイクル管理を簡素化・自動化できる唯一の DBaaS(サービスとしてのデータベース)です。NDB を利用することで、データベース管理者やプラットフォームチームは、数百から数千に及ぶデータベースの効率的かつセキュアな管理が可能となり、制御や柔軟性を犠牲にすることなく、性能、拡張性、セキュリティ、高可用性、ディザスタリカバリ、コストの要件を満たすことができます。また、NDB はアプリケーションのアジャイル開発を行う開発者が、データベースのプロビジョニングをシンプルで迅速かつセキュアに行えるよう支援します。

データベースの今後

データベース管理は、今後ますます困難になることが予測できます。主な理由は 3 つあります。

まず、組織が開発しデプロイするアプリケーションがかつてないほど増えている点です。IDC は、2025 年までに新たに開発されるモダンアプリケーションの数は 7.5 億を超えると予測しています。データベースはほぼ全てのアプリケーションに必要であることから、組織が管理するデータベースの数は増加の一途をたどることになります。運用するデータベースの数が増えると、全体を管理してセキュリティを確保する面での課題や、開発者にスムーズなアクセスを提供する面での課題も大きくなります。

第二は、単一のデータベースプラットフォームを標準化する時代ではなくなった点です。今日の開発者は、使用するテクノロジーを自ら決定する権利を有しています。開発者は定番の商用リレーショナルデータベース以外にも次第に関心を寄せ始め、従来のリレーショナルデータベースに加えて、オープンソースのデータベースや非リレーショナルデータベースの併用を検討しています。この結果、多くの組織では、種類が異なる複数のデータベースを管理する必要が生じ、複雑さが増します。

第三は、大半の組織がハイブリッドマルチクラウド戦略を採用しつつある点です。アプリケーションやデータベースを稼働する環境として、オンプレミスのデータセンターのほかに、プライベートクラウド、複数のパブリッククラウド、コロケーション施設、エッジを組み合わせた複数の運用環境を利用しているか、または利用を計画しています。運用モデルは環境ごとに異なるため、開発者やデータベース管理者、IT 部門、運用チームは複数の API の使い方を習得し、さまざまなツールやプロセスを使用して、データベースを管理する必要があります。したがって、データベース管理はいっそう複雑化します。

データベース関連のこのような課題に対処して、顧客満足度を高め、データから引き出す価値を最大化するには、ハイパーコンバージドインフラDBaaS(サービスとしてのデータベース)のようなテクノロジーが効果を発揮します。

関連リソース:

注目のリソース

SB Technology

SBテクノロジー、DBaaSを内製化し、運用の効率化とDBサービス標準化を実現

データベース管理の成功に欠かせない 3 つの要素

データベース管理の成功に欠かせない 3 つの要素

データベースの課題解決事例集

実際の組織が抱える、実際のデータベースに関する課題

関連製品とソリューション

データベースソリューション

Nutanix クラウドプラットフォーム(NCP)で業務プロセスを改善。NCP は、効率性と耐障害性に優れたデータベースインフラとして、さまざまなデータベースサービスを提供します。

Nutanix データベースサービス

Microsoft SQL Server、Oracle、PostgreSQL、MongoDB、MySQL に対応したハイブリッドマルチクラウド DBaaS です。数百から数千のデータベースの効率的かつセキュアな管理を可能にします。

SQL Server ソリューション

ITインフラストラクチャーにおいて現在の仮想化データベースに求められる高いパフォーマンスと耐障害性の要求を満たし、他の重要なワークロードにも対応します。